**EC – 601 Industrial Electronics**

**Unit-I**Power Supplies Power supply, rectifiers (half wave, full wave), performance parameters of power supplies, filters (capacitor, inductor, inductor-capacitor, pi filter), bleeder resistor, voltage multipliers . Regulated power supplies (series and shunt voltage regulators, fixed and adjustable voltage regulators, current regulator), switched regulator (SMPS), comparison of linear and switched power supply, switch mode converter (flyback, buck, boost, buk-boost, cuk converters).

**Unit-II**Thyristors Silicon controlled rectifies (SCR), constructional features, principle of operation, SCR terminology, turn-on methods, turn-off methods, triggereing methods of SCR circuits, types of commutation, comparison of thyristors and transistors, thermal characteristics of SCR, causes of damage to SCR, SCR overvoltage protection circuit, seies and parrel operation of sCRs, Line commutated converters (half wave rectifier with inductive and resistive load, single phase and three phase full wave rectifiers).

**Unit-III**Other members of SCR family Triacs, Diacs, Quadracs, recovery characteristics, fast recovery diodes, power diodes, power transistor, power MOSFET, Insulated gate bipolar transistor (IGBT), loss of power in semiconductor devices, comparison between power MOSFET, power transistor and power IGBT.

**Unit-IV**Applications of OP-AMP Basics of OP-AMP, relaxation oscillator, window comparator, Op-comp as rectangular to triangular pulse converter and vice- versa, Wien bridge oscillator, function generator, frequency response of OP-AMP, simplified circuit diagram of OP-AMP, power supplies using OP-AMP, filters (low-pass, high pass) using OP-AMP.

**Unit-V**Programmable Logic Controller (PLC) Functions, applications, advantages and disadvantages of PLC over conventional relay controllers, comparison of PLC with process control computer system, factors to be considered in selecting PLC, functional block diagram of PLC, microprocessor in PLC, memory, input and output modules (interface cards), sequence of operations in a PLC, status of PLC, event driven device, ladder logic language, simple process control applications of PLC, Programming examples.

**EC-602 Cellular Mobile Communications**

**Unit-I**Introduction to cellular mobile system A basic cellular system, performance criteria, uniqueness of mobile radio environment, operation of cellular systems, planning of cellular system. Elements of cellular radio system design General description of problem, concept of frequency reuse channels, co-channel interference reduction factor, desired C/I in an omni-directional antenna system, hand off mechanism, cell splitting, components of cellular systems.

**Unit-II**Cell coverage for signal and traffic General introduction, mobile point-to-point model, propagation over water or flat open area, foliage loss, propagation in near- in distance, long distance propagation, path loss from point-to-point prediction model, cell site antenna heights and signal coverage cells, mobile-to-mobile propagation. Cell site antennas and mobile antennas Equivalent circuits of antennas, gain and pattern relationship, sum and difference patterns, antennas at cell site, unique situations of cell site antennas, mobile antennas.

**Unit-III**Cochannel interference reduction Cochannel interference, real time cochannel interference measurement at mobile radio transceivers, design of antenna systems - omni directional and directional, lowering the antenna height, reduction of cochannel interference, umbrella- pattern effect, diversity receiver, designing a system to serve a predefined area that experiences cochannel interference. Types of Noncochannel interference Adjacent channel interference, near-end-far-end interference, effect on near-end mobile units, cross-talk, effects of coverage and interference by applying power decrease, antenna height decrease, beam tilting, effects of cell site components, interference between systems, UHF TV interference, long distance interference.

**Unit-IV**Frequency management and Channel Assignment Frequency management, frequency spectrum utilization, setup channels, channel assignment, fixed channel assignment, non-fixed channel assignment algorithms, additional spectrum, traffic and channel assignment, perception of call blocking from the subscribers Handoffs and dropped calls Value of implementing handoffs, initiation of handoff, delaying a handoff, forced handoff, queuing of handoff, power- difference handoff, mobile assisted handoff and soft handoff, cell-site handoff and intersystem handoff, dropped call rate formula.

**Unit-V**Digital Cellular Systems GSM- architecture, layer modeling, transmission, GSM channels and channel modes, multiple access scheme. CDMA- terms of CDMA systems, output power limits and control, modulation characteristics, call processing, hand off procedures. Miscellaneous mobile systems- TDD systems, cordless phone, PDC, PCN, PCS, non cellular systems.

**EC – 603 Digital Signal Processing**

**Unit – I**Discrete-Time Signals and Systems Discrete-time signals, discrete-time systems, analysis of discrete-time linear time-invariant systems, discrete time systems described by difference equation, solution of difference equation, implementation of discrete-time systems, stability and causality, frequency domain representation of discrete time signals and systems.

**Unit - II**The z-Transform The direct z-transform, properties of the z-transform, rational z-transforms, inversion of the z transform, analysis of linear time-invariant systems in the z- domain, block diagrams and signal flow graph representation of digital network, matrix representation.

**Unit - III**Frequency Analysis of Discrete Time Signals Discrete fourier series (DFS), properties of the DFS, discrete Fourier transform (DFT), properties of DFT, two dimensional DFT, circular convolution.

**Unit - IV**Efficient Computation of the DFT FFT algorithms, decimation in time algorithm, decimation in frequency algorithm, decomposition for ‘N’ composite number.

**Unit - V**Digital filters Design Techniques Design of IIR and FIR digital filters, Impulse invariant and bilinear transformation, windowing techniques- rectangular and other windows, examples of FIR filters, design using windowing.

**EC – 604 Antennas and Wave Propagation**

**Unit I**Radiation Potential function and the Electro magnetic field, potential functions for Sinusoidal Oscillations, retarded potential, the Alternating current element (or oscillating Electric Dipole), Power radiated by a current element, Application to short antennas, Assumed current distribution, Radiation from a Quarter wave- monopole or Half wave dipole, sine and cosine integral, Electromagnetic field close to an antenna, Solution of the potential equations, Far-field Approximation.

**Unit II**Antenna Fundamentals Introduction, network theorems, directional properties of dipole antennas, travelling –wave antennas and effect of feed on standing-wave antennas, two –element array, horizontal patterns in broad-cast arrays, linear arrays, multiplication of patterns ,effect of earth on vertical patterns, Binomial array, antenna gain, effective area.

**Unit III**Types of antennas Babinet’s principles and complementary antenna, horn antenna, parabolic reflector antenna, slot antenna, log periodic antenna, loop antenna, helical antenna, biconical antenna, folded dipole antenna, Yagi-Uda antenna, lens antenna, turnstile antenna. Long wire antenna: resonant and travelling wave antennas for different wave lengths, V-antenna, rhombic antenna, beverage antenna, microstrip antenna.

**Unit IV**Antenna array synthesis Introduction, retarded potentials, array structures, weighting functions, linear array analysis, different forms of linear arrays, Schelknoff unit circle, linear array synthesis, sum and difference patterns, Dolph- Chebychev synthesis of sum pattern, Taylor synthesis of sum patterns, Bayliss synthesis of difference patterns, planar arrays, arrays with rectangular boundary.

**Unit V**Propagation of radio waves Fundamentals of electromagnetic waves, effects of the environment, modes of propagation. Ground wave propagation- Introduction, plane earth reflection, space wave and surface wave, transition between surface and space wave, tilt of wave front due to ground losses. Space wave propagation- Introduction, field strength relation, effects of imperfect earth, curvature of earth and interference zone, shadowing effect of hills and buildings, absorption by atmospheric phenomena, variation of field strength with height, super refraction, scattering, tropospheric propagation, fading, path loss calculations. Sky wave propagation- Introduction, structural details of the ionosphere, wave propagation mechanism, refraction and reflection of sky waves by ionosphere, ray path, critical frequency, MUF, LUF, OF, virtual height, skip distance, relation between MUF and skip distance.

**EC – 605 VLSI Circuits and Systems**

**Unit I**Introduction Introduction to CMOS VLSI circuit, VLSI design flow, Design strategies ,Hierarachy, regularity, modularity, locality, MOS Transistor as a Switches, CMOS Logic, Combinational circuit, latches and register, Introduction of CAD Tool , Design entry, synthesis, functional simulation.

**Unit II**Specification of sequential systems Characterizing equation & definition of synchronous sequential machines. Realization of state diagram and state table from verbal description, Mealy and Moore model machines state table and transition diagram. Minimization of the state table of completely and incompletely specified sequential machines.

**Unit III**Asynchronous Sequential Machine Introduction to asynchronous sequential machine, Fundamental mode and Pulse mode asynchronous sequential machine, Secondary state assignments in asynchronous sequential machine, races and hazards.

**Unit IV**State Machine Algorithmic state machine and fundamental concept of hardware/ firmware algorithms. Controllers and data system designing.

**Unit V**Fault Detection in combinational circuit Types of faults, Fault detection using Boolean Difference and path sensitization method. Concept of PROM, PLA, PAL, CPLD and FPGA, PALASM software applications.

*/// PLZ give me Feedback about this Post///*

## 0 comments:

## Post a Comment